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ON STABILITY OF PERIODIC MOTIONS IN A PARTICULAR CRITICAL CASE* 

S. V. MEDVEDEV 

Liapunov's stability problem of the zero solution for a nonautonomous system of 

differential equations with periodic coefficients is considered in the case when 

the characteristic equation of the linearized system has r roots equal unity and 

2q complex conjugate roots in modulus equal unity. Several integral relations 

(internal resonances) may exist between the characteristic indices and the un- 

perturbed motion frequency. Equations are presented in standard form. Normaliza- 
tion is carried out by the Deprit-Hori method with a modification similar to that 

of Mersman /l/. Sufficient conditions of instability and asumptotic stability are 

obtained in the case of a system with a single internal resonance and r=l and 
q=l. 

Let us consider the stability problem of the zero solution of a system of nonautonom- 

ous differential equations with holomorphic right-hand sides as follows 

where x(I)@, t) are holomorphic vector functions that are periodic in I of real period o, 

and represent I-th order forms. 

Let us assume that the characteristic equation of system (0.1) has r roots equal unity 

and 2q roots in modulus equal unity (0, = exp(-t_ 1/Y_io,), S= i,...,q) to which correspond simple 
elementary divisors. 

AS shown in /2/, the stability problem of type (0.1) systems reduces to the 

stability analysis of the zero solution of the system of autonomous equations with (riq) 

zero roots to which correspond simple elementary divisors, provided that among the character- 

istic in indices A,= = I/=-iw,, a,>", S= i,...,g of matrix A(t) there are no integral relations 

of the form /3/ 
<AP(')) _= 

2n1/--1 

PC') = ($', ., p?'), 

-lJj*, pj*=o,*1,*2,. 

1 P(') 1 = py + . + ,,g Plj>,2,~~)~0~ 

(0.2) 

A=diag(h,,...,&), i= i,...,~, ,U>I 

where p(j) is a u-dimensional vector with integral components ~2). If (0.2) is satisfied, 

we say that one or several internal resonances are present. In that case the problem reduces 

to that of stability of the zero solution of a system of autonomous equations with 

zero roots /2/. 
(r + 29) 

Certain problems of stability were considered for that case in /4-7/. 
The present investigation is aimed at obtaining the standard form of system (0.1) with 

(0.2) satisfied up to the m-th order (m>2) term in the critical case of r zero and 2q pure 

imaginary characteristic indices with simple elementary divisors and, also, at the investiga- 

tion of stability of the zero solution of system (0.1) for r=l and q = 1 when one of rela- 

tions (0.2) applies (the case when r=land q=1 in systemsofgeneral form in the absence 

of resonances was investigated by Kamenkov /2/, and that of r=2 and q= 1 in Hamiltonian 

systems was analyzed in /8/). 

1. The standard form of equations. We assume that (0.2) is satisfied and 11 is 
an arbitrary finite positive integer (apart from (0.2) there are no internal resonances in 

the system). As shown in /9/, it is possible by using the nonsingular linear transformation 

with periodic (of period (1) 1 coefficients, to represent system (O-l), without affecting the 
stability problem, in the form 

2' = JlZ + ,F Z"'(z, z, y, t), 2 =(zl, . . . ( z,J, Y’ = L;z Y(‘) (z, 5, y, t), y = (y1, . . , y,)’ (1.1) 

where z and c are complex conjugate vectors, and Z(l) and y(l) are vector functions whose com- 
ponents are homogeneous I-th order forms with periodic (of period w) coefficients. 

Wederivethe standardformofEqs.(l.l) /lo/ by carrying out the normalization not by the 

cumbersome classical procedure of substitution of series into series (**)but by the method 

*Prikl.Matem.Mekhan.,44,No.4,650-659,198O 

**) Medvedev, S. V., On an algoritm of non-Hamiltonian system normalization. VINITI No. 
2719-78, 1978. 
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460 S. V. Medvedev 

of Deprit-Hori /11,12/ which is convenient for computer calculations *). Extension of 
that method to non-Hamiltonian systems is given in /12,13/. Below, we obtain another ex- 

tension of this method using the Mersman method /1,14/. 
We recall that the normalizing transformation of coordinates is defined by formula 

?+%+I 

Q* = exp (D\V(,,,) Q, &V(O) = 
c 

(1.2) 

+1 

o* _ (Q* . . .. % 21, ’ t t. %> Yl, . I ., y,, 1), Q ~- (ut, . . . u,,. VI, . ., C,@ WI, . . ., tri,. t) 

where o* and Q are (r + 2q C I)-dimensional vectors of the old and new variables and .&I.(~) is 
a Lie operator with generator W'(Q) /12,13/ (time 1 is used as supplementary coordinate, and 
Ff/r+lil+l (Vk 0). 

The Lie generator w(Q) is in form of the sum of homogeneous forms with periodic in 1 

--a 

where Iis, Lg. and Ng are vectors with integral components (in what follows we use vector 
exponents in the presentation of homogeneous forms, similarly to formula (1.3). 

It was shown in /12,13/ that the image of any analytic function gtQ*) after transforma- 

tion (1.2) is 
k'* CQ) == =P (h’(Q)) $7 (f?) (1.4) 

Using the Mersman procedure /1,13/, developed by him for Hamiltonian systems and con- 
venient for problems of normalization of nonlinear ordinary differential equations, it is 
possible to show that for the determination of the image g* (Q) in (1.4) it is sufficient use 
the recurrent relations 

~*(~)=~~"g,~~(~~ (1.5) 

G*(Q) = ggk+a(O); FB,,~(Q)= + f: &+N,-~,~-~~~((/), go, n (Q) = 621 (VI; Ii I;+ 1; I~i:i+l = &linLT~ iQ, (1.6) 
hZO m=ii 

where g,,*(Q) are homogeneous forms of power (n -:. 1) in variables '? with periodic in I coef- 
ficients. Formulas (1.6) contain intermediate forms L'-I,,,-~~,(@. 

Substituting in conformity with (1.7) and (1.8) forms g,j_,,,l_,,! one into another beginning 

with &= $, it is possible to obtain g%* (Q) as a function of the initial forms 6i (Q)> i E 

{0, 1, 2,. . .) (this is the mentioned above modification of the Deprit-Hori method) 

It follows from (1.7) that, if at least one form gi((?)-_oO, i E it,?,... ],then in the right- 

hand side of formula for g,*(Q) terms iYfgi (Q) are always absent. By applying (1.5)- (1.7) 

we reduce the normalization procedure of Eqs. (1.1) to solving the following operator equation: 

Di*gO (0) = ii (0) - gi** (Q), i z 1, 2,. . ., nL - 1 (1.8) 

where g, (0) and ii (0) are vector functions of dimension 0. + 2@ whose components are forms 

of the (i + I)-st order in the right-hand sides of the input system (1.1) and the normalized 

system, respectively; forms of the (i -t l)-st order with known periodic coefficients 

play the part of components of the vector function gi** (0) of the same dimension as $i (0) and 

*) Markeev, A. P. and Sokol'skii, A. G., Certain computational algorithm of Hamiltonian 

system normalization. Preprint No.31 Inst. Appl. Math. Akad.Nauk SSSR, 1976. 
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fi (Q). 
The effect of operator Di*on first order forms go (0) is 

r+Zp awi (Q) 
Di*go (Q) = Dig0 (Q) - x ge. o(Q) v - at 

P-1 

Note that first order terms are not affected by normalization so that 

ga, o (Q) = r/-1 a.uai ga+q,o (Q) = ga>, (Q), g,,o (Q) = 0, a = 1,. . .I q> v = 1, . ., r 
Taking this into account, we represent the left-hand side of (1.8) thus: 

Di*g,, 0 (Q) = - I+‘,, i (Q) (K, -L, - E,, h) - awa;; (Q) , Di*g,, o (Q) = - IV,, i (Q) (K, - L,, h) - v 
Ea = (0,. ., 1,. . ., 0), a = (A,,. . ., A,)’ 

(here and subsequently only formulas for the first group of complex conjugate variables u1. 

. .( up) are written out). The coefficientsB,*(t)offorms Wi(Q)which determine the normaliz- 

ing transformation are, then, determined by equations of the form 

dB,*ldt + x,&* = G,* (t) - A,“(t), a = 1,. . ., I^ + zq (1.9) 

%=<Ka-LL,-&,h), a=1 ,..., q, x,-(K,-LL,,h), a-1 ,..., r 

where Au*(t) are the sought coefficients of the standard form, and G,* (t) are known periodic 

functions. The solution of Eqs. (1.9) is known /2/, namely: it follows from (1.9) that when 

conditions 

2n 1/z 
%=-pp,, 

w Pa=“ffl,&2 ,..., CL=l, . . . . rf2q (1.10) 

are not satisfied, there exists a unique periodic (of period o ) solution for Bu*(t) 

B,* (t) = exp (G) [ 1 ."_'~x~$$, 1 exp (- xat)Ga* (t) dt + f exp (- x,~) G,* (t) dr] 
0 0 

(1.11) 

for any Aa* (t), including A,* (t) = 0. 
The terms of homogeneous forms in the right-hand sides of equations corresponding to such 

K,,L,, and N, are called nonresonant; they can be suppressed by a suitable selection of 

coefficients of the normalizing transformation. On the other hand solution (1.11) looses its 

meaning, if (1.10) holds. But if we set 

A,* (t) = da* exp (- x,J), d,X~m&{exp(i(~t)C~*(t)dt 
0 

then Eq. (1.9) will again have the unique (but different from (1.11)) periodic solution 

f 
B,* (t) = exp (-x&t) [c + S [exp (xaz)G,* (r) -da*] dT] 

0 

where c is an arbitrary constant. The respective terms are called resonant. The successive 

determination of resonant and nonresonant coefficients B,*(t) and A,*(t) in conformity with 

the described above procedure for i = 2,3,..., m yields each time equations of type (1.9); 

the right-hand sides of fi (Q) of the normalized system now contain only resonant terms with 
constants that are either constant or (in case of degeneration) zero. Coefficients of the 
normalizing transform (and also of the generator w(Q)) will obtain in the form of bounded 

o-periodic functions. 

Let us determine the structure of resonant terms of standard form. We note, first of all, 
that Eq. (1.10) admits for any i and pa = 0 the following simple solution: 

K, = L, f- E,, a = I,..., q; 2 1 L, 1 = i - 1 - [Na[ (1.12) 

K, = L,, a = 1,. . ., r; 2 1 L, 1 = i - 1 ,$‘,I 
(1.13) 

The respective terms, called terms of identical resonance, are always present in the 
standard form irrespective of the values of natural frequencies tia in any order of i, unlike 
in the critical case of 4 pairs of pure imaginary roots, where they appear only in terms of 

odd order /2/. 
If relations (0.2) exist, Eq. (1.10) has in addition to (1.12) and (1.13) two other 

groups of solutions 

L, = EP(.) + fla(“) - &, K, = Ha(‘), pa = - Eps*, a = 1. . ., q 

f,, =: csP(") fm H+“, Kp = HB(5), pp = - up,*, f3 = 1,. . ., r 

(1.14) 
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K, 2= &P(S) + HCL(<) -t E,, L, = H,(y), pa = &ps*, a = 1,. , _( * 

Kfj -= UP(‘) L Hip(“). Lfi = HP@), pfi = up**, p = 1,. . ., r, s = I,. _, u 
(1.15) 

where H,(,r) is the column number a of the s-th integral matrix whose elements are nonnegative 
and satisfy the conditions 

21 Ha(“) 1 = (m i I - urn, - / N, I) )_ 0, a = 1,. . _, q, F .-: 1, 2.. . . , e,, s 

2 I Hp(S) 1 = (m - urn, - 1 Nb 1) > 0, p = 1,. . ., r, G = 1,. . ., ulr s = 1,. . ., p 

E~,~ = E I(m I!X 1 - I N, I) / m,l, ul = I!? [(m - I Np I) / %I 
(subscripts 1 and 2 and the plus and minus signs relate to (1.14) and (1.15), respectively). 

Formulas (1.14) and (1.15) enable us to determine the most general structure of the standard 
form of Eqs. (1.1) up to terms of m-th order (m>2). Note that terms of the s-th internal 

resonance of order m, can appear only in forms of order not lower than m,--1. 
We pass from variables Us, u,, and ~to new variables pa, and ~~ using formulas 

11, = paexp (I/-1~p~ -t I/---1o,t), Pa = &, WQ = “fiq CL = 1, ., ‘I, p = 1, . ., r 
The standard form of Eqs. (1.1) is now 

(1.16) 

a=1 ,..., q; yeI,..., r; Bs= 3 pPva; S=i, . . ..P 
CL=1 

P,* (CO,) = aa* cos (~0,) + b,* sin (CO,), ua* = He d,*; 

!I,* = Im d * 
- 

qv* (a~,) -?d:* esp (- 1/-loo,) + dy esp ( r/- 100,) 
(*)+(H&,P'"' + Hg'- E,,N,)(d'(') f H:' + E,, H'a"', r,) 
(**) j [,H;', oP(") + HF', IV,,), (***)=+(oP'") + H:"', H:"',N,) 

where terms of order higher than m which are holomorphic functions periodic in t. It will be 

seen from (1.16) that in the presence of (0.2) system (1.1) is reduced by normalization to an 

autonomous system withr -/m 2q zero roots to which correspond r -~- 2q groups of solutions. It is 

interesting to note that the structure of standard form (1.16) does not vary independent of 
whether relations (0.2) hold for ,aj* =O or for pj* # 0, j E (1. . . ., p}. This property was 

established for the case of r=O in/4/. 

2. Lemma on instability. Let us prove the following lemma which is a modification 

of Kamenkov's theorem on instability /2/. A similar modification was proved earlier in the 

particular case of two degrees of freedom(*). 

*) Khazina, G. G. and Khazin, L. G., On the possibility of resonance stabilization of a 

system of oscillators. Preprint, No.130, Inst. Prikl. Matem., Akad.Nauk SSSR, 1978. 
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Lemma 2.1. Let by some change of variables the equations of perturbed motion be 

reduced to the form 

r' = FR@) (cp) $ r"E: (cp, r, t) , cps’ = r’n-Y,(@ ($7) + P+‘Ns (cp, r, t), s = 1, . . ., Y (2.1) 

where (Y -~ 1) is the order of system (2.1), m is the order of the first nonzero terms in the 

right-hand sides, and R(o)(m) and E((p, r,t)are holomorphic periodic functions of the vector 

of angular variables rp =(cpl,...,mV) and, also, r,t; F,(o)(cp), N,(rp,r,t), s = l,...,~ are holo- 
morphic periodic functions for all 'p ~[0,2n] with the possible exclusion of the finite number 

of singular points; &(m,O,t) = E(rp,O,t)s 0. 
Let the system of equations 

F,c@ (cp) = 0. s = 1, ., v (2.2) 

admit the particular real solution for 'PI, * + *, TV 

‘p = c$ = const (2.3) 

such that point CJI' from (2.3) is not singular for functions F,(O) (m) and N, (cp, r, t). 
Then, if 

R(O) (9") > o (2.4) 

the zero solution of (2.1) is Liapunov unstable. 

Proof. We linearize in the neighborhood of the particular solution of Eq. (2.1) 

1.' -= FH(O) (rp") -+ PUJ (r, q, t), 11' _ r m-1 (b + P-r II, (r, Tj, t) (2.5) 

'1 = (%* ‘3 %‘. ‘1s = ‘pr - & s = 1, . .( Y, c = I/ Cs{ 11 

where functions CD(~, 11. 1) and H,(F, 11, t) that are holomorphic in some region BE nv+l of the 

coordinate origin, satisfy the conditions @ (0, U, 1) E II, (0, 0. I) E 0. In what follows we use the 

method proposed by Kamenkov in the proof of extension of the theorem of Briot and Bouquet /2/. 

The system of Eqs. (2.5) can b e reduced to equations of the form 

(2.6) 

In region B by virtue of (2.4) and of the holomorphy of m(r,~),t) it is possible to represent 

system (2.6) as follows: 

(2.7) 

where rs(r, q,t) are holomorphic in B functions with coefficients periodic in t (in (2.7) time 

t is considered to be a parameter). 

According to /2/ there exists one determinate system of functions ~(r,t) that satisfy 
(2.7) and such that q)s (0, t)zO; functions ~(r,t) are holomorphic in B with coefficients that 
are periodic in I or r 

?s(r, t)=h~r+rYs(r, t). s=~,...,Y 
(2.8) 

or in r and rlnr 

%(rl t)=h,r+rY,(r,rInr,t), s=i,...,v (2.9) 

Substitution of solution (2.8) or (2.9) into the first of Eqs. (2.5) yields 

r' = rrnRCO) (rpO) f PH (r, t), H (0, t) zz 0 (2.10) 

where H(r,1) is a function holomorphic in B and periodic in t. It follows from (2.10) that 
when condition (2.4) is satisfied r(t) increases with increasing t independent of m and the 
unperturbed motion that corresponds to system (2.1) is unstable. 

3. Investigation of stability in the case of resonance with r=l andq=l. 
We assume the existence of internal resonance of the form 

- 
3h= 2nv-l __-p, p=+1,*2,... 

0 

The case of absence of relation (3.1) was considered in detail in /2/. 
In conformity with (1.10) the standard form of equations is 

p' = Dp’cos (q - 38) + apw J- . .; 8 *= Dpsin(Q - 36) + @O + . . ., w’ = lb2 + rp2 + . . . 

(3.1) 

(3.2) 

D zzz (a” + b*)‘/z , sin* = alD, cos$ = b jD 



464 S. V. Medvedev 

where a, b,a, fl,c, d are real coefficients determiend by formulas in sect.1 in terms of coef- 
ficients of the input system. It can be shown that when d#O the zero solution is Liapunov 
unstable, using Kamenkov's theorem on instability j2/ for proving this. Consequently we 
henceforth assume that d=O. We pass from P and w to polar coordinates r and m. In the 
new coordinates system (3.2) assumes the form 

r' = "R("((P, 8) + . + r’“+2ft(m’(q, 0) + r’“+Vf((p, fj, r, t) (3.3) 

'P' = r&@' (cp, 8) + . -I rm+‘Fim’ (cp, e) + F+*q (cp, e, r, t) 

e* = rFP (cp, e) + . . . + rm+‘Fim’ (cp, e) + r”+Q, (up, e, r, t) 

where R(" (cp, 8), F$ (cp, 0) (1 = 0, 1, . ., m), H (cp, 8, T, t), and Q, 1,z('p,8, r,t) are holomorphic 

functions periodic in cp, 0 or cp, 0, t , and 

~(0) (cp, e) = (c + a)cos q sin2 'p + D sin3 'p cos (Q - 38) 

F,(o'(cp, 8) = sin cp [a cos2m - c sin2 rp + D cos ‘p sin ‘p cos (21, - 3e)l 

F,(o) (cp, f3) = D sin cp sin ($ - 38) + p cos 'p 

It can be seen that the system of equations 

Pi@' (cp, e) = 0, i = 1, 2 (3.4) 

has a real solution when condition 

D 4 + 4caD2 - 4~73~ > 0 (3.5) 

is satisfied. 
The solution cp = 'pO = con& 8 = 8" = ConSt of (3.4) has the property that whencp"E[O,n/2], 

it has another solution 'p*'= cp"$ n and vice versa. The quantity R(O'(m0,80) may then be 

positive. According to Lemma 2.1 we have Liapunov instability. 

Remark. The case when condition (3.5) is not satisfied and there is, consequently, 

no real solution of (3.4) requires separate investigation. 
Let us prove the following theorem. 

Theorem 3.1. Let in (3.2) d= 0 and p = 0. If the inequality 

D2 > -4ca (3.6) 

is satisfied, the zero solution of (3.2) is Liapunov unstable. If (3.6) is violated, still 

for cp=cp' and e = 80, which are solutions of (3.4), the relation 

RO (~0, eo) = . . . = m-1’ (g, ec) = 0, mm’ (g, eq > 0, m>l (3.7) 

is valid, and we have instability. If, however, (3.6) is not satisfied and 

~(0' (cpo, eq = . . = R(m-1’ (vc, F) = 0, R(m) (c$, ec) < 0, m > 1 (3.8) 

the zero solution is asymptotically Liapunov stable. 

Proof. As the Liapunov function we take 

V=rexp N 
I r 

-_~os'~+ceos~t~sin3~eos(~-33Bi]} (3.9) 

By virtue of equations of perturbed motion the time derivative 8’ is 

v’= Vr I?(‘) (cp, e) + N [Ff’) (cp, e)12 + N [Ff” (cp, e)12 + (3.10) 

When condition (3.6) or (3.7) is satisfied, R~m'(cp",i30)>0 so that function r can be 

made positive definite for all cp, l3E [O, 2~1, including those for which F$ (m,8) = 0, if N is 

made a fairly large positive number. Then function V satisfies Liapunov's theorem on instab- 

ility /9/. 
If condition (3.8) is satisfied and D2 ’ , --4ca, it is possible to show that ~(0' (mo, ea) 

= 0, If we select a fairly large positive number for N, then function v' can be made negat- 

ive definite throughout the region where Ft',(cp, 8)pO. For those 'p and 8 for which F:j',(cp,e) 

= 0 we have (3.8) so that the sign of expressions between braces in (3.10) are, as previously, 

negative. Thus V satisfies Liapunov's theorem on asymptotic stability. The theorem is 

proved. 

The author thanks V. G. Veretennikov for his interest in this work and discussion of 

results. 
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